M. J. Cánovas Cánovas, R. Henrion, M. A. López-Cerdá, J. Parra López
This talk deals with uncertain linear inequality systems viewed as nonempty closed coefficient sets in the (n+1)-dimensional Euclidean space. The perturbation size of these uncertainty sets is measured by the (extended) Hausdorff distance. We focus on calmness constants and their associated neighborhoods for the feasible set mapping at a given point of its graph. To this aim, we introduce an appropriate indexation function which allows us to provide our aimed calmness constants through their counterparts in the setting of linear inequality systems with a fixed index set, where a wide background exists in the literature.
Palabras clave / Keywords: calmness constants, uncertain inequality systems, indexation
Programado
Sesión GT11-4: Optimización Continua-4 (OPTIMIZACIÓN-4). Organizador: Javier Toledo Melero
29 de mayo de 2018 15:20
Sala 6